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Highlights

• Novel Theory: A finite-time SRL algorithm for multi-player nonzero-sum game is developed with theoretical guarantees on convergence and safety.
• New Algorithm: A finite-time concurrent learning law is proposed for NN training, which improves finite-time convergence speed and reduces excitation

requirements.
• Unified Framework: The method combines barrier functions, finite-time stability, and multi-player games in a unified control framework for quadcopter

systems.
• Extensive Validation: Numerical simulations and hardware experiments on quadcopters demonstrate superior performance over existing methods.
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Abstract

This paper investigates a finite-time safe reinforcement learning control algorithm for multi-player nonzero-sum
games (FT-SRL-NZS). In addressing the finite-time safe optimal control issue, value functions incorporating des-
ignated barrier functions for the involved players are established within the transformed finite-time stable space. The
finite-time safe optimal controller is derived from the solution to the transformed Nash equilibrium condition. An
actor-critic structure is proposed for solving the Hamilton-Jacobi-Bellman (HJB) equation in the finite-time stable
space, aimed at approximating the finite-time optimal value and its corresponded controller using a novel finite-time
concurrent learning update law. A dynamic event-trigger rule adjusts the trigger condition in real time, thereby min-
imizing the computational and communicative demands associated with calculating Nash equilibrium. Lyapunov
stability analysis is employed to examine the finite-time equilibrium of the closed-loop system. Numerical simu-
lations and unmanned aerial vehicle (UAV) hardware tests are carried out to illustrate the efficacy of the proposed
finite-time safe control algorithm.

Keywords: Finite-time optimal control, nonzero-sum game, reinforcement learning, neural network, dynamic
event-trigger, adaptive dynamic programming

1. Introduction

Optimal control has been extensively employed in the control of multi-player systems [1]. In multi-player systems
[2], agent interactions are typically represented as non-zero-sum (NZS) games [3]. The NZS game extends the con-
cept of the zero-sum game and is commonly applied in the control of multi-player systems [4]. In an NZS game, the
agents do not engage in competition; rather, their objective is to attain a shared goal [5]. The NZS game is extensively
investigated in the field of multi-player control, including formation control [6], distributed control [7], and coopera-
tive control [8]. In recent years, numerous studies have been undertaken to seek the Nash equilibrium in NZS games
[9]. However, the convergence speed of Nash equilibrium is slow and uncertain, making it challenging to ensure the
performance of the control algorithm.

In practical applications, such as the pursuit-evasion game [10] and the human-robotics cooperative games [11],
the precise assurance of convergence speed is crucial for the effective control of NZS games [12]. Finite-time optimal
control is a technique that guarantees the convergence rate of system states within a specified finite duration [13].
This method involves the formulation of a finite-time optimal value function and its associated finite-time optimal
controller. The application of fractional-order calculus in finite-time optimal control significantly elevates the compu-
tational complexity of the control algorithm [14]. Also, the solution to the Hamilton-Jacobi-Bellman (HJB) equation
in finite-time optimal control presents significant challenges [15], potentially leading to the curse of dimensionality
in control algorithms. To solve the aforementioned issues, the reinforcement learning (RL) algorithm is introduced
to approximate the value function and the optimal controller in the finite-time optimal control [16]. Policy iteration
[17] and value iteration [18] are two commonly employed RL algorithms to solve the problem of optimal control.

Email addresses: tanjk@stu.xjtu.edu.cn (Junkai Tan), xssxjtu@xjtu.edu.cn (Shuangsi Xue)

Preprint submitted to Information Sciences March 20, 2025



The actor-critic method [19] has been developed for obtaining the value function using the critic-network and the
optimal controller by the actor-network in [20]. Q-learning is extensively studied in RL algorithms for the approxima-
tion of the value function through iterative processes [21]. Nonetheless, the convergence rate of the RL algorithm is
limited [22], and the conditions for training excitation are demanding [23]. The advancement of concurrent learning
techniques seeks to enhance the convergence speed of RL algorithms by approximating the value function and the
optimal controller within a finite-time convergence framework [24]. The finite-time concurrent learning (FT-CL) law
for the RL algorithm merits investigation, as it effectively enhances the convergence speed and relaxes the excitation
conditions during training.

Another major concern in the control of NZS-based multi-player systems is the safety performance of the control
algorithm [25], which is defined as the assurance that system states remain within a safe operational region [26].
Previous research [27] introduced the barrier-function-transformation, which converts the safety functionality of the
control algorithm into a stabilization problem of the transformed system states. The barrier-penalty methods are stud-
ied to impose penalties on system states that breach safety constraints [28]. There are two primary challenges in the
safe RL control of multi-player NZS games. First, the simultaneous assurance of finite-time performance and safety
performance in the control algorithm is challenging [29], potentially diminishing the algorithm’s effectiveness. Sec-
ond, the modeling of constraints and the design of barrier functions within the control algorithm presents significant
challenges [30]. The finite-time safe RL control of multi-player NZS games deserves further investigation to address
the aforementioned challenges, given its effectiveness in improving both finite-time performance and safety of the
control algorithm.

Recent studies highlight several fundamental challenges in multi-player reinforcement learning control: (1) con-
ventional non-zero-sum game algorithms [31] achieve only asymptotic convergence without ensuring operational
safety, (2) existing safety-aware approaches [32] face significant limitations in convergence speed and system con-
straints, (3) the simultaneous achievement of efficient learning and safety guarantees remains elusive - our work
bridges this gap through innovative FT-CL mechanisms and barrier function design [33] and [25], and (4) practical
implementation validation is lacking in current methods [34], which we address via comprehensive quadcopter exper-
iments. This paper presents a novel finite-time safe reinforcement learning framework for multi-player nonzero-sum
games (FT-SRL-NZS) to overcome these challenges. The main contributions are:

1. Compared with existing RL [35] and safe RL [36] algorithms for NZS game, both finite-time performance
and safety performance are considered in the proposed FT-SRL-NZS algorithm. A finite-time safe optimal
control problem is formulated to attain the finite-time Nash equilibrium in a multi-player NZS game while
circumventing obstacles. The value functions that incorporate specific barrier functions for participating players
are defined within the transformed finite-time stable space. The finite-time performance and safety performance
are simultaneously guaranteed by the proposed FT-SRL-NZS algorithm compared with [34].

2. A FT-CL-based update method is proposed for training the critic network weights, with the objective of approx-
imating the value function and the optimal controller within a convergence-time-guaranteed framework. The
FT-CL technique improves the speed of finite-time convergence [15] and alleviates the excitation conditions
[37] required for training compared to existing methods.

3. The effectiveness of the proposed FT-SRL-NZS algorithm is demonstrated through numerical simulations and
UAV hardware experiments [38], which shows that the proposed algorithm can achieve finite-time stabilization
control of the system states while avoiding obstacles compared with existing methods [25].

The remainder of this paper is organized as follows: Section II describes the system model and obstacle formulation.
Section III develops the finite-time safe optimal control framework. Section IV presents the proposed FT-SRL-NZS
algorithm with an actor-critic structure. Section V analyzes finite-time stability and convergence properties. Section
VI validates the algorithm through numerical simulations. Section VII demonstrates practical effectiveness via UAV
hardware experiments. Section VIII concludes the paper with key findings and future directions.

Notation: The following notation will be used throughout the paper: The notation |x|cω =
∑n

i=1 wi |xi|
c denotes the

weighted norm of vector x ∈ Rn with weight vector ω = [w1, · · · ,wn]⊤, and |x|c =
∑n

i=1 |xi|
c denotes the norm of

vector x ∈ Rn.
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2. Preliminaries

2.1. System description and obstacle modeling
Consider a nonlinear system with unknown drifted dynamics and multiple players. To establish the theoretical

framework for safe control, we make the following assumptions:

Assumption 1 (Obstacle Construction). To model the nearby space of the obstacle, the following assumptions are
given:

1. Obstacles are considered to be static and there should be no overlap between obstacles; if there is an overlap,
the overlapped obstacles are considered to be modeled as a larger obstacle.

2. The obstacle is represented by a minimum inner enveloping sphere, and the maximum radius of the obstacle is
considered as the obstacle avoidance condition.

3. The center point of modeled obstacle is denoted as po,i and radius as ro,i, which is denoted as Oi, and the total
number of obstacles is M.

Assumption 2 (System Properties). For the augmented dynamics (2), the following holds:
1. Functions f (x) and gi(x) are Lipschitz continuous on compact set x ∈ χ ∈ Rn with f (0) = 0 and ∥gi(x)∥ ≤ GHi

for all x ∈ χ.
2. Cost matrices satisfy 0 ≤ λQi

≤ ∥Qi∥ ≤ λ̄Qi and 0 ≤ λRi j
≤
∥∥∥Ri j

∥∥∥ ≤ λ̄Ri j with λ̄Qi , λ̄Ri j > 0.

Assumption 3 (Persistence of Excitation Condition). The historical data stack for weights update satisfies that for the
i-th time step (i = 1, . . . ,N), the following holds:

ϑ1iIL ⩽
∫

T
ϕiϕ
⊤
i

(ϕ⊤i ϕi+1)2 dτ,

ϑ2iIL ⩽
∑N

l=1

∫
T

ϕl
iϕ

l⊤
i

(ϕl
i
⊤ϕl

i+1)2 dτ,

ϑ3iIL ⩽
∫

T ϕ
†

i |ϕi|
α⊤ sgn(ϕi)dτ,

ϑ4iIL ⩽
∑N

l=1

∫
T ϕ

l†
i |ϕ

l
i|
α⊤ sgn(ϕl

i)dτ,

(1)

where ϑ ji ( j = 1, 2, 3, 4) is strictly positive for at least one j.

Assumption 4 (Neural Networks Boundedness). Assuming that the following parameters and operators are bounded:
∥Ŵci∥ ≤ WH , ∥ϕi(x)∥ ≤ ϕH , ∥∇ϕ(x)∥ ≤ ϕDH , ∥ϕi(x)∥ ≤ ϕH , ∥∇ϕi(x)∥ ≤ ϕDH , ∥ϵi(x)∥ ≤ ϵH , ∥∇ϵi(x)∥ ≤ ϵDH ,

Consider the following nonlinear system with unknown drifted dynamics:

ẋ = f (x) +
N∑

i=1

gi(x)Ui (2)

where x ∈ Rn represents the system state, Ui ∈ Rm denotes the control input, f (x) ∈ Rn describes the system
dynamics, and gi(x) ∈ Rn×m specifies the control input matrix for player i. To characterize safety constraints near
obstacles, we model the surrounding space as concentric spherical zones with varying risk levels.

Let di(x, xo,i, t) = ∥x(t) − xo,i(t)∥ denote the instantaneous distance between the system state and obstacle i. The
safety-critical regions are characterized by three nested zones:

1. Detection zoneD = ∪i∈MDi: Outer boundary where obstacle monitoring initiates

Di = {x ∈ Rn|Ro,i < di(x, xo,i, t) ≤ Do,i}

2. Warning zoneW = ∪i∈MWi: Intermediate region requiring preventive actions

Wi = {x ∈ Rn|ro,i < di(x, xo,i, t) ≤ Ro,i}

3. Critical zone O = ∪i∈MOi: Inner core demanding immediate evasive maneuvers

Oi = {x ∈ Rn|di(x, xo,i, t) ≤ ro,i}

The radii satisfy ro,i < Ro,i < Do,i as illustrated in Fig. 1. The complete safety-constrained region is defined as
A = ∪i∈M(Di ∪Wi ∪ Oi).
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Figure 1: Safety regions around an obstacle consist of three nested zones: detection regionDi (blue), warning regionWi (red), and obstacle region
Oi (yellow). Each spherical zone is centered at xo,i with corresponding radii Do,i, Ro,i, and ro,i.

2.2. Unsafe region and barrier function design
To incorporate safety constraints in system (2) near obstacles, we define regions where safe operation must be

maintained.

Definition 1. (Safety-Critical Operational Zone [25]). For system (2), a domain S ⊂ Rn is safety-critical if any
trajectory initiating at x(0) ∈ S remains within S for all future time t ≥ 0. The safety-critical zone S is characterized
by:

S = {x ∈ Rn|h(x) ≥ 0}
Bound(S) = {x ∈ Rn|h(x) = 0}

Core(S) = {x ∈ Rn|h(x) > 0}

where h(x) represents a smooth safety criterion function, Bound denotes the boundary, and Core represents the interior
of the safe zone.

To maintain safety while exploring, we require h(x(t)) ≥ 0,∀t ≥ 0. This motivates the use of control barrier
functions to ensure safe control.

Definition 2. (Control Barrier Function [39]). A continuously differentiable function B(x) : Rn → R is a control
barrier function (CBF) for system (2) if there exist positive constants β1, β2 such that:

1
β1h(x)

≤ B(x) ≤
1

β2h(x)

where

B(x) > 0, ∀x ∈ Core(S)
B(x)→ ∞, as x→ Bound(S)

The CBF and corresponding safety region function are constructed as:

B(x) =
KBs(x)

h(x) + µ
(3)

where h(x) =
∑

i∈M hi(x), s(x) =
∑

i∈M si(x), hi(x) = di(x, xo,i, t) − ro,i, and KB, µ are positive parameters. The safety
function si(x) is defined as:

si(x) =



0, di > Do,i,

ξ1(1 + cos(π
d2

i −D2
o,i

D2
o,i−R2

o,i
)), Ro,i < di ≤ Do,i,

ξ2 + ξ3 cos(π
d2

i −r2
o,i

R2
o,i−r2

o,i
), ro,i < di ≤ Ro,i,

1, di ≤ ro,i,

(4)

with parameters satisfying ξ2 + ξ3 = 1 and ξ2 − ξ3 = 2ξ1.
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3. Problem formulation: finite-time safe optimal control

To achieve both safety and finite-time (FT) performance, we formulate an FT-safe optimal control problem that
stabilizes the system states while avoiding obstacles. The goal is to design an optimal controller that drives the system
states to the equilibrium point x∗ ∈ Ω(δ, x0) within finite time, where δ > 0 is arbitrary.

3.1. Optimal control problem
First, the following quadratic cost function can be defined for the system (2) with multiple players:

Vi(x,U1, . . . ,UN) =
∫ ∞

0
ri(x,U1, . . . ,UN) dτ (5)

where ri(x,U1, . . . ,UN) is defined as the reward of its corresponded player (i = 1, . . . ,N), the input Ui(t) is
limited by bound |Ui(t)| ≤ µi for each player i. The running cost function ri(x,U1, . . . ,UN) takes the form:

ri(x,U1, . . . ,UN) =|x|αx +
N∑

k=1

Λik(Uk) + B(x, xo) (6)

where |x|αx denotes the weighted state norm with weight matrix ω ∈ Rn×n, si(x, xo,i) from (4) provides smooth obstacle
avoidance, B(x, xo) represents the barrier function in (3), and Λik(Uk) captures control penalties [40]:

Λik(Uk) = 2µkRik

∫ Uk

0
tanh−1 (γU/µk) dγU (7)

with positive definite penalty matrix R ∈ Rn×n and integral variable γU . For the system dynamics (2), the optimal
value functionV∗i (x) is defined as:

V∗i (x) = min
Ui(τ)∈ΩU

∫ ∞
t

ri(x(τ),U1(τ), . . . ,UN(τ))dτ (8)

over admissible control set ΩU ∈ Rm×1.

Definition 3. (Nash equilibrium [27]) Consider the multi-player NZS game of the system (2), given a set of control
input {U1, . . . ,UN}, a Nash equilibrium is achieved if the following conditions are satisfied:

V∗1(x) = V1(x,U∗1,U
∗
2, . . . ,U

∗
N) ≤ V1(x,U1,U

∗
2, . . . ,U

∗
N)

V∗2(x) = V2(x,U∗1,U
∗
2, . . . ,U

∗
N) ≤ V2(x,U∗1,U2, . . . ,U

∗
N)

. . .

V∗N(x) = VN(x,U∗1,U
∗
2, . . . ,U

∗
N) ≤ VN(x,U∗1,U

∗
2, . . . ,UN)

where V∗i (x) is the i-th optimal value, in which the above multi-player NZS game achieves the Nash equilibrium{
V∗1,V

∗
2, . . . ,V

∗
N

}
.

The Hamiltonian function for this optimal control problem is:

Hi(x,U1, . . . ,UN ,∇V
∗
i ) = |x|αx + B(x, xo) +

N∑
k=1

Λik(Uk) + (∇V∗i )⊤( f +
N∑

k=1

gkUk) (9)

with gradient ∇V∗i =
∂V∗

∂x . By optimality conditions, the optimal control law becomes:

U∗i (x) = arg min
Ui∈ΩU

Vi(x,U1,U2, . . . ,UN) = −µi tanh
R−1

ii g⊤i
2µi

(
∇V∗i
)⊤ (10)

whereΩU is the admissible set of control inputUi. Then, the corresponding Hamilton-Jacobi-Bellman (HJB) equation
is:

0 =(∇V∗i )⊤( f +
N∑

k=1

gkUk) +
N∑

k=1

Λik(Uk) + |x|αx + B(x, xo) (11)

While this optimal controller (10) achieves state stabilization, its convergence rate is not guaranteed. The next
section develops a finite-time optimal controller with provable convergence properties.
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3.2. FT-value-function via transformation
For the guarantee of FT stability, a transformed value function is established in the FT convergence space. First,

we introduce formal definitions to characterize system FT stability and the transformed function. Transformation is
designed to convert the optimal value from the asymptotic convergence space to the finite-time convergence.

Definition 4. (FT Stability of the System [38]): With the existence of time constant T ∈ (0,+∞), if provided that for
all δ > 0 and τ ≥ T , system state x(t) satisfiesV{xτ, x∗} ≤ δ, then the state x(t) from system (2) is defined as FT stable
state with respect to optimal equilibrium-point x∗,

Definition 5. (Transformed Function of FT Stable Space): In FT stable space, a function transformed from regular
asymptotic stable space is denoted as Ξi (x, x∗) ≥ 0, where x∗ is optimal equilibrium point that satisfies condition
∇Ξi (x∗, x∗) = 0. For its derivatives, it holds that ∇2Ξi ≥ 0,∀x ∈ Ωn.

To obtain its corresponded optimal input, the transformation function Ξi (x, x∗) is used to convert the valueVi(x)
(5) from the regular asymptotic stable space to the FT stable space. The value function that has been transformed
within the FT stable space is defined as follows:

Vi {x, x∗} =
∫ x∗

x
sig

α
2 (∇Ξi (ζ, x∗)) dζ (12)

where sig
α
2 (∇Ξi (ζ, x∗)) = |∇Ξi (ζ, x∗) |

α
2 sgn(∇Ξi (ζ, x∗)), sgn(·) is the sign operator, and α is a parameter within bound

(0, 1). Transforming the FT-value-function (12), its related transformed Hamiltonian could be obtained as:

Hi (x, x∗,∇Ξi,U1, . . . ,UN) =|x|αω+B(x, xo)+
N∑

k=1

Λik(Uk) + sig
α
2 (∇Ξi)⊤( f +

N∑
k=1

gkUk) (13)

Accordingly, the corresponded optimal input is derived via seeking the minimum transformed Hamiltonian (13)
as follows:

U∗i = −µi tanh

R−1
ii g⊤i sig

α
2 (∇Ξi)

2µi

 (14)

The optimal controller (14) ensures FT convergence through the transformed FT-value-function (12). To obtain the
transformed Hamiltonian (13) and the corresponded controller, the FT-SRL-NZS algorithm is developed in the next
section with actor-critic neural networks.

Remark 1 (Model-Controller Integration). The controller design integrates system models from Section 2 through
key mechanisms. Controller parameters derive directly from system characteristics - penalty matrices Rii reflect in-
put bounds µi, weights ωi prioritize state tracking objectives, and barrier terms KB, µ encode obstacle constraints.
The control law (14) leverages system dynamics (2) through input matrix gi(x), respects control limits µi, and in-
corporates safety via transformed gradient ∇Ξi. Parameter adaptation occurs through concurrent learning (21)-(22),
event-triggered updates based on errors and barriers, with rates α1, α2 ensuring finite-time convergence. This integra-
tion preserves system properties while enabling safe control synthesis.

4. FT-SRL-NZS Learning-based Control Algorithm

4.1. Approximating FT-value-function
For the obtainment of FT-value-function and its corresponded input, the following structure designs are proposed

for the critic and actor neural networks (NNs). First, a critic network is constructed to estimate the FT-value-function
from (15):

V∗i (x) = W∗ci
⊤ϕi(x) + B(x, xo) + ϵ∗i (x) (15)

where W∗ci denotes optimal critic weights, ϕi(x) ∈ RN represents NN basis, and ϵ∗i (x) is the approximating error. In
practice, since optimal value is unknown, the estimated value function takes the form:

V̂i(x) = Ŵ⊤ciϕi(x) + B(x, xo) (16)

6



where Ŵci represents estimated critic weights. Substituting (16) into (13) yields the Hamilton-Jacobi-Bellman (HJB)
equation:

0 = |x|αω + B(x, xo) +
N∑

k=1

Λik(Uk) + (W∗⊤ci ∇ϕi + ∇ϵ
∗
i )( f +

N∑
k=1

gkUk) (17)

where Λik(Uk) denotes penalty on control input Uk for player i. For optimal controller approximation, an actor
network is designed as:

Ξ̂i(x) = Ŵ⊤aiϕi(x) (18)

where ϕi is the actor-NN basis, and Ŵai is the weights of the actor-NN. Actor-NN meets the condition of the trans-
formed value function that ∇2Ξi = Ŵ⊤

ai∇
2ϕi(x) ≥ 0,∀x ∈ Ωn, which is given in Definition 5. Then the corresponded

Hamilton (13) is derived in the term of δH for the HJB equation (17):

δHi =|x|
α
ω + B(x, xo) +

N∑
k=1

Λik(Uk) + Ŵ⊤ci∇ϕi( f +
N∑

k=1

gkUk)

=
{
(Ŵci −W∗ci)

⊤∇ϕi − ∇ϵ
∗
i

}
( f +

N∑
k=1

gkUk) (19)

To approximate the FT-characteristic critic-NN (16) and corresponded actor-NN (18), the loss function is the
squared form is designed utilizing a historical experience replay of system state and funciton δH :

Ei =
1
2

N∑
k=1

{
sigα(∆k

Hi
)
}⊤

sigα(∆k
Hi

) +
1
2
{
sigα(∆Hi )

}⊤ sigα(∆Hi ) (20)

where ∆k
Hi

is replayed residual (17) in the calculus form for agent i. Then, a FT-CL update law based on gradient
descent is proposed to update the critic-NN weights:

˙̂Wci = −
α1ϕi

1 + ϕ⊤i ϕi
sigα(∆Hi ) −

α2

M

M∑
k=1

ϕk
i sigα(∆k

Hi
)

1 + (ϕk
i )⊤ϕk

i

(21)

where α1, α2 > 0 are learning rates and ϕk
i represents historical states of critic-NN basis functions. To obtain the

actor-NN weights Ŵai, the transformation (12) converts FT-value-function [38], and corresponded actor-NN weights
are estimated as:

Ŵai =

{∫
Ωn

∇ϕi∇ϕ
⊤
i dx
}† {∫

Ωn

∇ϕi sig
2
α

(
∇V̂i

)
dx
}

(22)

where † denotes Moore-Penrose inverse and
∫
Ωn
·dx is the Lebesgue integral inspired by the transformation (12).

Substituting (22) into (14) yields the actor-critic FT optimal controller:

Ûi = −µi tanh

R−1
ii g⊤i sig

α
2 (∇ϕ⊤i Ŵai)

2µi

 (23)

The FT optimal controller has been approximated by transforming the value function (5) to the FT convergence
space, then the weights of the critic and actor-NNs are learned by the FT-CL update law (21) and (22), and the FT
optimal controller is obtained by utilizing actor-NN (23). The computational complexity of FT-value-function and
corresponded input is reduced by FT-CL law (21) and (22). However, it is still difficult to achieve real-time control of
the system due to the computational load of calculating the sign function sigα(·). To further reduce the computational
load of the controller approximation and the communication burden of the plant, a dynamic event-triggering rule is
constructed to trigger the controller approximation and the communication of the control plant in the next subsection.
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Figure 2: Structure of the proposed FT-SRL-NZS algorithm.

Remark 2 (Training Optimization). The optimization of our FT-SRL-NZS algorithm is a derivative of Adaptive Dy-
namic Programming (ADP) methods [19] and [33]. Our training optimization integrates three elements. For value op-
timization, we update critic weights Ŵci by minimizing: Ei =

{
sigα(∆Hi )

}⊤ sigα(∆Hi ) +
1
2
∑n

k=1

{
sigα(∆k

Hi
)
}⊤

sigα(∆k
Hi

),
with historical residuals ∆k

Hi
. The weights evolve via concurrent gradient descent (21) using basis function ϕi, rates

α1, α2 and historical states ϕk
i . Barrier-shaped rewards in assumption 3 ensure sufficient exploration while avoiding

unsafe regions. Lyapunov analysis proves finite-time convergence, with rates determined by α1, α2 and order α. This
surpasses conventional reinforcement learning’s asymptotic guarantees.

Remark 3 (Novel Features of Proposed Method). Our approach advances the state of art in several ways. While exist-
ing reinforcement learning methods only achieve asymptotic convergence [35], we establish finite-time convergence
bounds and safety guarantees via barrier functions for multi-player Nash equilibria. In contrast to standard techniques
[13], we enable efficient computation through event-based updates and model-free online learning for distributed sys-
tems. The implementation combines adaptive tuning with proven stability under uncertainties [41] and [42], making it
practical for safety-critical multi-agent applications. This unified framework bridges critical gaps between finite-time
control, safety assurance, and game-theoretic optimization.

4.2. Dynamic event-triggering rule

To minimize computation and communication overhead in controller implementation, a dynamic event-triggering
(DET) mechanism is developed. The key idea is to introduce a dynamic variable η that stores triggering event infor-
mation, which evolves according to:

η̇ = −λη +

(1 − κ)λω∥x∥2 − G2
MΞϵ

2
∥Ŵai∥

2
∥∥∥e j

∥∥∥2
= −λη + Λ

(
x, e j

) (24)

where e j = x − xΞ represents the error between current and last triggered states, with initial condition η(0) ≥ 0.
The decay rate λ > 0 and threshold κ ∈ [0, 1] are design parameters that control triggering frequency. λω denotes
the minimum eigenvalue of state penalty matrix ω, GM is the norm of input matrix gk, and Ξϵ is a positive bounded
parameter defined as

Ξϵ =
(
G2
φG

2
M + G

2
gφ

2
dM

) ∥∥∥R−1
ii

∥∥∥2 (25)
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whereGϕ andGg are the Lipschitz constants of the dynamic matrix f and the control input matrix g. With the definition
of the dynamic variable η (24) and its dynamic equation, the next triggering time is obtained by the following DET
rule:

τ j = inf
t > τ j−1 | η(t) + α

(1 − κ)λω∥x∥2 − G2
MΞϵ

2
∥Ŵai∥

2∥e j∥
2
 ≤ 0


= inf

{
t > τ j−1 | η(t) + αΛ

(
x, e j

)
≤ 0
}

(26)

where α is a positive constant designed to adjust the triggering frequency. Note that when α→ 0, the triggering rule is
equivalent to the continuous time-triggering rule. when α→ ∞, the triggering rule is equivalent to the event-triggering
rule. Then the corresponding triggered control input of the automation is obtained by:

Ūi(t) =
{
Ûi(τ j), if t ≥ τ j

Ûi(τ j−1), otherwise
(27)

where τ j is the jth triggering time calculated by the DET rule (26). The proposed DET rule is able to reduce the
computational load of the controller approximation and the communication burden of the control plant. The complete
FT-SRL-NZS algorithm, incorporating actor-critic approximation and dynamic event-triggered control, is summarized
in Algorithm 1 and illustrated in Fig. 2. The algorithm achieves finite-time convergence through FT-CL laws while
reducing computational burden via event-triggered updates. Finite-time convergence of system state x, NN weights
Ŵci and Ŵai is analyzed in the next section.

Algorithm 1 FT-SRL-NZS Algorithm for Safe Optimal Control
Input:
1: Initial neural network weights: Ŵc → critic, Ŵa → actor
2: Initial dynamic variable η and historical data {x(ti),∆i

Hi
}

3: Learning parameters: α1, α2 (rates), α (fractional order)
4: Control parameters: Ri j (penalties), ωi (weights), µi (bounds)

Output: Finite-time safe optimal control inputs Ûi

5: while t < tend do
6: Execute control actions Ûi(t) to system (2)
7: Sample current state x(t) and system outputs
8: if Dynamic event-trigger (26) activated then
9: Evaluate residual HJB errors ∆Hi ← (19)

10: Update critic weights Ŵc ← (21)
11: Map finite-time Value function V̂i ← (12)
12: Update finite-time transformed actor weights Ŵa ← (22)
13: Compute optimal control Ûi ← (23)
14: Update dynamic threshold η← (24)
15: end if
16: Maintain historical data stacks {x(ti),∆i

Hi
}

17: Record control inputs Ûi(t) and system states x(t)
18: end while

Remark 4 (Computational Complexity Analysis of FT-SRL-NZS). The computational complexity of FT-SRL-NZS
consists of online and offline components. The online computation is dominated by neural network forward pass
O(n2), control law evaluation O(m3), and barrier function calculation O(p), where n is the number of neurons, m is
the number of control inputs, and p is the number of safety constraints. The offline part requires O(n3) for back prop-
agation, O(k2) for policy optimization with k policy parameters, and O(b log b) for experience replay with buffer size
b. Memory requirements scale as O(n2) for NN weights, O(b) for experience buffer, and O(t) for state history over
horizon t. Three key optimizations improve efficiency: (1) finite-time convergence reduces training computation com-
pared to asymptotic stability [35] (2) event-triggered updates cut online computation compared to continuous updates

9



[40], and (3) efficient barrier implementation enables O(p) scaling with constraints. These lead to faster training than
baselines while maintaining 30 Hz real-time control on embedded systems. The complexity analysis demonstrates
that FT-SRL-NZS achieves an effective balance between computational efficiency and control performance.

Remark 5 (Relationship to Alternative Learning Methods). Our ADP&RL methodology differs significantly from
typical deep learning approaches like DDPG [43]. While DRL relies on black-box networks and reward shaping for
constraints, our method leverages Lyapunov theory and barrier functions to establish rigorous finite-time convergence
compared with classical safe control method [39], and classical stabilization control method [34]. This analytical
foundation provides explicit safety guarantees and enhanced interpretability compared to asymptotic DRL methods,
making it especially valuable for critical control systems requiring provable performance bounds.

Remark 6 (Extensions to Other Application Domains). The finite-time safe reinforcement learning framework pre-
sented in this paper can be effectively extended to several key application domains. In space medicine telerobotics like
[41], barrier functions can be modified to enforce medical safety constraints and equipment protection zones, while
incorporating time delay compensation and precision requirements. For industrial heating processes like furnace
control like [42], the framework can be adapted by reformulating barrier functions for temperature/pressure bounds,
extending the multi-player game structure to coordinate multiple heating zones, and optimizing energy efficiency.
The framework’s versatility in integrating domain-specific requirements while maintaining core stability and safety
guarantees demonstrates its broad applicability beyond quadcopter control.

5. Theoretical Analysis of FT-SRL-NZS Algorithm

5.1. Zeno behavior avoidance analysis
The following theorem establishes that Zeno behavior is avoided under the proposed dynamic event-triggering

scheme (26), by proving a positive minimum inter-event time exists.

Theorem 1. Considering the proposed DET rule (26), the Zeno behavior of the closed-loop system is avoided under
the proposed control scheme, in which the minimum triggering interval is given by:

∆tmin =
Ξ

G(Ξ + 1)
(28)

where Ξ =
√

2(1−κ)λω
G2

MΞϵ∥Ŵai∥
2 , G = G2

M
2∥Rii∥

φdM

∥∥∥Ŵai

∥∥∥ + G.

Proof. According to the dynamics of the dynamic variable η (24), the event is triggered when
{
η(t) + αΛ

(
x, e j

)
≤ 0
}
,

then the condition of triggering (26) could be rewritten as:

(1 − κ)λω∥x∥
2 ≥
G2

MΞϵ

2

∥∥∥Ŵai

∥∥∥2 ∥∥∥e j

∥∥∥2 (29)

According to the controller design (23), Ûi

(
x̂ j

)
is bounded by∥∥∥∥Ûi

(
x̂ j

)∥∥∥∥ ≤ ∥µi∥ (30)

With the inequality of control input (30), the triggering condition (29) could be further rewritten as:

∥ẋ∥ ≤G∥x∥ + GM∥µi∥
∥∥∥x + e j

∥∥∥ (31)

Denote H(t) =
∥∥∥e j/x

∥∥∥. Then for any t ∈
[
τ j, τ j+1

)
, taking the derivative of H with respect to time and the

following inequality holds:

Ḣ =
d
dt

√
e⊤j e j

x⊤x
≤

∥∥∥∥∥ ẋ
x

∥∥∥∥∥ × ∥∥∥∥∥e j

x

∥∥∥∥∥ + ∥∥∥∥∥ ẋ
x

∥∥∥∥∥ ≤ G(1 +H)2

when Ḣ = G(1 +H)2, the growth rate of H reaches the maximum. When H(0) = 0, the triggering condition (29)
can be solved asH(τ) = τG/(1 − τG), the minimum triggering interval ∆tmin =

Ξ
G(Ξ+1) . The proof is completed.
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5.2. FT stability analysis

This subsection establishes the FT stability properties of states and NN weights. To leverag practical FT sta-
bility conditions for the establishment of rigorous stability guarantees, the following lemmas provide the theoretical
foundation for our stability analysis.

Lemma 1. (Finite-Time Stability Analysis [13]): For nonlinear affine-input system (2), consider the FT-value-
function with its corresponded input (14), and consider the following Lyapunov function:

LVi =
2

α + 2

∣∣∣∇Ξ∗i ∣∣∣ α2 +1
(32)

The time derivative satisfies:

L̇Vi ≤ −
nλGi

λKi

4
|∇Ξ∗|

α
≤ −cUiL

2α
α+2
V (33)

where λKi
= min{

∣∣∣∣∇2
x j
Ξ∗i

(
x j

)∣∣∣∣}nj=1, λGi
is the minimum eigenvalue of giR−1

ii g⊤, and cUi =
nλGi

λKi
4 |1 + α

2 |
2α
α+2 .

The system states achieve stability within finite time:

TUi [x(0)] =
(α + 2){LVi [x(0)]}

2−α
α+2

cUi (2 − α)
(34)

Lemma 2. (Finite-Time Stability in Practice [38]): For the nonlinear system (2) under FT control (14), consider a
Lyapunov function V > 0 satisfying Vi(0) = 0, ∀x ∈ Ωn\{x0}. If V̇ ≤ −γVα + δΓ holds with γ > 0, α ∈ (0, 1), and
δΓ ∈ (0,∞), then for some 0 < Γ < 1: (1) The states converge to V ≤

{
δC/
[
γ (1 − Γ)

]}1/α; (2) The stabilization time
is limited within TΓ[x(0)] = V(1−α)/ {(1 − α)Γγ}.

For establishing FT properties of proposed FT-SRL-NZS algorithm, we first analyze the convergence of the critic
weights and Nash equilibrium.

Theorem 2. (FT Convergence of Critic-Network and Nash Equilibrium) Under the FT-SRL-NZS algorithm 1 with
FT-CL laws (21)-(22), the following convergence properties hold in finite time: (1) The value function (16) converges
toV∗i ; (2) The controller (23) converges toU∗i ; (3) The critic weights Ŵci converge to ideal weights W∗ci; (4) The Nash
equilibrium is achieved.

Proof. We first design the following Lyapunov function associated with the critic-NN weights Ŵci and the estimated
value function V̂i:

V i(t, x, V̂1, . . . , V̂N , Ŵc1, . . . , ŴcN) =
1

α + 1

N∑
i=1

{∣∣∣V̂i −V
∗
i

∣∣∣α+1
+
∣∣∣Ŵci −W∗ci

∣∣∣α+1
}
=

N∑
i=1

{
V i

1 + V i
2

}
=

N∑
i=1

V i (35)

where V i
1 = |V̂i −V

∗
i |
α+1/(α+1), V i

2 = |Ŵci −W∗ci|
α+1/(α+1). Differentiating the Lyapunov function (35) with respect

to time, and utilizing the FT-CL law (21) along with the estimated value function (16), we obtain:

V̇ =
N∑

i=1

{
sigα
(
Ŵci −W∗ci

)⊤ ˙̂Wci + sigα
(
V̂i −V

∗
i

)⊤ ˙̂
Vi

}

=

N∑
i=1

{
sigα
(
W∗ci − Ŵci

)⊤
+ sigα

(
V∗i − V̂i

)⊤
ϕ⊤i

} α1ϕi sigα(∆H )(
ϕ⊤i ϕi + 1

)2 + M∑
i=1

α2ϕ
k
i sigα(∆k

Hi
)

M
(
ϕk

i
⊤ϕk

i + 1
)2
 (36)

11



According to the construction of update law (21) and transformation of actor-NN weights (22), the integral of the
estimated Hamiltonian function Ĥ can be rewritten as:

∆Hi =

∫ t+T

t
Ĥi (∇Ξi,Ui, x) dτ − 0

=

∫ t+T

t

Ŵ⊤ci∇ϕ( f +
N∑

i=1

giUi) + |x|αω +
N∑

i=1

Λi

 dτ

−

∫ t+T

t

(W∗⊤ci ∇ϕi + ∇ϵ
∗
i

)
( f +

N∑
i=1

giUi) +
N∑

i=1

Λi + |x|αω + B(x, x0)

 dτ

=

∫ t+T

t

(
Ŵ⊤ci∇ϕi −W∗⊤ci ∇ϕi − ∇ϵ

∗
i

)
( f +

N∑
i=1

giUi)dτ

=V̂i −V
∗
i (37)

With the residual error (37), and consider the Assumption 3, the integral of first term sigα(V̂i − V
∗
i )⊤ ˙̂
Vi in (36)

can be simplified as∫ t+T

t
sigα
(
V̂i −V

∗
i

)⊤ ˙̂
Vidτ = −

∫ t+T

t
sigα
{
V̂i −V

∗
i

}⊤
ϕ⊤i

α1ϕi sigα(∆Hi )(
ϕ⊤i ϕi + 1

)2 +

M∑
k=1

α2ϕ
k
i sigα(∆k

Hi
)

M
(
ϕk

i
⊤ϕk

i + 1
)2
 dτ

≤ − sigα
(
V̂i −V

∗
i

)⊤
(ϑ1i + ϑ2i)IL sigα

(
V̂i −V

∗
i

)
≤ − ϑ5i

∣∣∣V̂i −V
∗
i

∣∣∣2α (38)

where ϑ5i = α1ϑ1i + α2ϑ2i. Then, the first term in the right hand of (36) will satisfying sigα(V̂i − V
∗
i )⊤ ˙̂
Vi ≤

ϑ4i|V̂i −V
∗
i |

2α. The integral of second term sigα(Ŵci −W∗ci)
⊤ ˙̂Wci in the right hand of (36) can be simplified as:

∫ t+T

t
sigα
(
Ŵci −W∗ci

)⊤ ˙̂Wcidτ= −
∫ t+T

t
sigα
(
Ŵci −W∗ci

)⊤α1ϕi sigα(∆Hi )(
ϕ⊤i ϕi + 1

)2 + M∑
k=1

α2ϕ
k
i sigα(∆i

H
)

M
(
ϕk

i
⊤ϕk

i + 1
)2
 dτ

≤ − sigα
(
Ŵci −W∗ci

)⊤ 
∫ t+T

t
ϕ†i sigα (ϕi)⊤ +

M∑
k=1

∫ t+T

t
(ϕk

i )† sigα
(
ϕk

i

)⊤
dτ

 sigα
(
Ŵci −W∗ci

)
≤ − ϑ6i

∣∣∣Ŵci −W∗ci

∣∣∣2α (39)

where ϑ6i = α1ϑ3i + α2ϑ4i. By combining the (38) and (39) of Lyapunov function (35), partial of Lyapunov function
(36) could be simplified as: ∫ t+T

t
V̇ idτ ≤ −

{
ϑ4i

∣∣∣V̂i −V
∗
i

∣∣∣2α + ϑ6i

∣∣∣Ŵci −W∗ci

∣∣∣2α} (40)

According to the above inequality (40) of Lyapunov function (35), the derivative of Lyapunov function (35)
satisfies the following inequality:

V̇ i ≤ − ϑ
′

6i

∣∣∣Ŵci −W∗ci

∣∣∣2α − ϑ′4i

∣∣∣V̂i −V
∗
i

∣∣∣2α
≤ − ϑ

′

6i |1 + α|
2α

1+α

{∣∣∣Ŵci −W∗
ci

∣∣∣α+1
/(α + 1)

} 2α
1+α
− ϑ

′

4i |1 + α|
2α
α+1

{∣∣∣V̂ − V∗∣∣∣α+1
/(α + 1)

} 2α
α+1

≤ − ϑ
′

4i |1 + α|
2α
α+1 (V i

1)
2α
α+1 − ϑ

′

6i |1 + α|
2α

1+α (V i
2)

2α
1+α

≤ −min
{
ϑ
′

4|1 + α|
2α
α+1 , ϑ

′

6i |1 + α|
2α
α+1

}
((V i

1)
2α
α+1 + (V i

2)
2α

1+α ) = −ϑVi(V i)
2α
α+1 (41)
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where ϑ
′

4i = ϑ4i/T , ϑ
′

6i = ϑ6i/T , ϑVi = min{ϑ
′

4i|1 + α|
2α
α+1 , ϑ

′

6i |1 + α|
2α
α+1 }, then with the proposition of Lemma 2, there

is a settling time TŴci

(
V i(x, x0)

)
> 0 for the weights of critic-NN Ŵci to converge to the optimal value W∗ci. When

t > TŴci

(
V i(x, x0)

)
, the inequality V i < δi,∀δi > 0 holds, and the convergence time satisfies

TŴci

(
V i(x, x0)

)
=

(α + 1)
{
V i(x, x0)

} 1−2α
1+α

ϑVi (1 − α)
(42)

which satisfies the definition of FT convergence from Definition 4, the weights of critic-NN Ŵci will converge to
the optimal critic weights W∗

ci within finite time TŴci

(
V i(x, x0)

)
. With the value function converging to the optimal

value function, the Nash equilibrium {V∗1, . . . ,V
∗
N ,W

∗
c1, . . . ,W

∗
cN} will be achieved within finite time TV̂i

(
V i(x, x0)

)
=

max
{
TŴc1

(
V1(x, x0)

)
, . . . ,TŴcN

(
VN(x, x0)

)}
. The proof is completed.

To further analyze the FT convergence of system states and the weights of the actor-NN, the following theorem
will be given to prove the FT convergence of state x and weights Ŵai.

Theorem 3. (FT Stability of Actor-Network and System States) Consider the FT-SRL-NZS algorithm 1 and system
(2): (1) The FT-optimal-input Û obtained from (23) is convergent toU∗ from (14) in FT space; (2) The states x is FT
stable utilizing the input (23).

Proof. With the transformation between the optimal value function and the converted value function (12), the optimal
actor weights can be derived by substituting the optimal critic weights W∗ci into the optimal actor weights (22) as

W∗ai =

{∫
Ωn

∇ϕi∇ϕ
⊤
i dx
}† {∫

Ωn

∇ϕi sig
2
α

(
∇ϕ⊤i W∗ci

)
dx
}

(43)

Subtract the estimated actor weights Ŵai of (22) from the optimal actor weights W∗ai of (43), the norm of the
difference can be derived as

∥Ŵai −W∗
ai∥

2
2 =

{∫
Ωn

∇ϕi

{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}
dx
}⊤ {∫

Ωn

(
∇ϕi∇ϕ

⊤
i

)
dx
}−⊤ {∫

Ωn

(
∇ϕi∇ϕ

⊤
i

)
dx
}−1

×

{∫
Ωn

∇ϕi

{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}
dx
}

≤
1
λ2
ϕi

{∫
Ωn

∇ϕi

{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}
dx
}⊤ {∫

Ωn

∇ϕi

{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}
dx
}

(44)

where λϕi
is the minimum eigen value of integral

∫
Ωn
∇ϕi∇ϕ

⊤
i dx. Using the Schwarz inequality [15], the norm of

actor-NN weights difference can be simplified as:

∥Ŵai −W∗ai∥
2
2 ≤

1
λ2
ϕi

∥∥∥∥∇ϕi

{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}∥∥∥∥2
2

≤
1
λ2
ϕi

⟨∇ϕi∇ϕi⟩
〈{

sig
2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)} {
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}〉
Ωn

≤
λ̄2
ϕi

λ2
ϕi

〈{
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗

ci

}} {
sig

2
α

(
∇ϕ⊤i Ŵci

)
− sig

2
α

(
∇ϕ⊤i W∗ci

)}〉
Ωn

(51)

Moreover, the norm of the actor-NN weights difference can be further simplified as:

∥∥∥Ŵai −W∗ai

∥∥∥2
2 ≤

λ̄2
ϕi
λ̄2
ϕi

λ2
ϕi

∣∣∣Ŵci −W∗ci

∣∣∣ 4α (45)
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where λ̄ϕi is the maximum eigen value of integral
∫
Ωn
∇ϕi∇ϕ

⊤
i dx. According to Theorem 2, weights of critic-NN Ŵci

is able to stabilize to optimum critic W∗ci within FT space, and the following inequality can be derived as:∣∣∣Ŵci −W∗ci

∣∣∣1+α < (1 + α)δi, ∀δi > 0 (46)

while t > TŴci

(
V i
)
, where TŴci

(
V i
)

is the FT time of critic weights (42) from Theorem 2. Substituting the convergence
of critic weights (46) into the inequality of actor weights (45), it could be derived that

∥∥∥Ŵai −W∗ai

∥∥∥2
2 ≤

λ̄2
ϕi
λ̄2
ϕi

λ2
ϕi

{(1 + α)δi}
4

(1+α)α , ∀δi > 0 (47)

which means the weights of actor-NN Ŵai will stabilize to optimum actor W∗ai within FT space. Focusing on the
corresponded FT input Û, consider settling time (34) from Lemma 1, the convergence time of the actor weights Ŵai

to W∗ai will satisfy

TUi [x(0)] ≥
(α + 2)

{
LVi [x(0)]

} 2−α
α+2

cLi (2 − α)
(48)

where
LVi (x, x0) =

2
α + 2

∣∣∣∇ϕ⊤i Ŵai(0)
∣∣∣ α2 +1

(49)

Summarizing the above analysis, the FT input Ûi will stabilize to U∗i within the finite time TUi [x(0)] from (48),
and the weights of the actor-NN Ŵai will converge to the optimal actor weights W∗ai within the finite time TŴci

(
V i(x, 0)

)
from Theorem 2. Then the settle time of the approximate optimal control algorithm 1 is derived as the maximum value
of TUi [x(0)] and TŴci

(
V i
)
:

TÛi
= max

{
TŴci

(
V i
)
,TUi [x(0)]

}
(50)

Proof for the FT convergence of the actor-NN is completed. Next, we will prove that the system states x will be
convergent within finite time Tx[x(0)]. With the definition of actor-critic-NNs and the approximation of the weights,
the input is derived as the form of U∗i → −µi tanh(0.5R−1

ii g⊤i ∇ϕ
⊤
i W∗ci/µi). Based on the design of input (23), it could

be obtained that: ∥∥∥U∗i − Ûi

∥∥∥2 ≤ ΣiW̃⊤ci W̃ci + ΠUi (51)

where Σi is a upper bound related with φH , φD,H , σH and σD,H , ΠUi is a upper bound related to δD,H . Accordingly, the
derivative of the Lyapunov function LV from (33) can be further derived as:

L̇Vi = sig
α
2
(
∇Ξ∗i
)⊤
∇2Ξ∗i

 f +
N∑

i=1

gi

(
Ûi −U

∗
i

)
+

N∑
i=1

giU
∗
i


≤ nα

sig
α
2 (∇Ξ∗)T

 f +
N∑

i=1

gi

(
Ûi −U

∗
i

)
+

N∑
i=1

giU
∗
i




≤ nα

(Ûi −U
∗
i

)⊤
Rii

(
Û − U∗i

)
− |x|αω − B(x, xo) −

N∑
k=1

Λik(Uk)


≤ −cUiL

2α
α+2
Vi
+ Π̄Ui (52)

where Π̄Ui = nαmaxλ̄RiΠUi . Then the Lyapunov function LVi will satisfy the following inequality:

L̂Vi ≤

{
Π̄Ui(

1 − cTi

)
cUi

} α+2
2α

(53)
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Table 1: Parameters of the UAV system and control law

Parameter Group Values

UAV Parameters
Ixx = 0.00226 kg ·m2, m = 0.5799 kg
Iyy = 0.00282 kg ·m2, g = 9.81 m/s2

Izz = 0.0021 kg ·m2, kt = 0.01 (s · kg)−1

Low-level Control
hx1 = −5.25, hy1 = −5.25, hz1 = 3.0
hϕ2 = 3.50, hθ2 = 3.50, hψ2 = 0.35
hϕ1 = 0.40, hθ1 = 0.40, hψ1 = 0.10

Learning Parameters
R11 = R22 = R12 = R21 = 0.1
ωi = 0.1112, αi = 0.9, F1 = F2 = 0.1
µ1 = µ2 = 0.15, λ = 0.9, ϵ = 1

where cTi satisfies 0 < cTi < 1. According to the FT stability theory from Lemma 1, the convergence time of the
system states x can be derived as:

Tx[x(0)] =
LVi [x(0)](α + 2)

cUi cTi (2 − α)
(54)

In summary, we have shown that: (1) The FT input Ûi stabilizes to U∗i in finite time TÛi
(2) The states x is stable

within FT constant Tx[x(0)] This completes the finite-time stability proof of the closed-loop system.

The above theoretical analysis establishes finite-time convergence guarantees for system states and neural network
weights under the proposed FT-SRL-NZS algorithm. The dynamic event-triggering mechanism in (26) prevents Zeno
behavior while ensuring efficient implementation. Extensive numerical simulations are conducted in the following
section to validate the effectiveness of the proposed approach.

Remark 7 (Convergence Analysis). Our adaptive dynamic programming approach exhibits guaranteed finite-time
convergence properties. The maximum adaptation time is bounded by Tadapt = max{TŴc

[x(0)],TŴa
[x(0)]}, where

TŴc
and TŴa

represent convergence times for critic and actor components. The convergence speed benefits from
novel FT-CL laws enabling efficient training, event-triggered mechanisms reducing computational costs, and barrier
transformations maintaining safety constraints. Theorems 1 and 2 establish that critic weights reach optimal values in
time TŴc

[x(0)], actor weights converge within TŴa
[x(0)], and Nash equilibrium is attained in finite time. These results

advance beyond classical ADP methods which only achieve asymptotic convergence.

Remark 8 (Guidelines for Practical Lyapunov Function Selection). The selection of appropriate Lyapunov func-
tions for practical applications requires systematic consideration of both system characteristics and implementation
constraints. For systems dominated by linear dynamics, quadratic forms are recommended due to their analytical
tractability, while energy-based functions are particularly effective for mechanical systems. The barrier function terms
should be carefully scaled according to actuator limitations, with parameter µ optimized to achieve an appropriate bal-
ance between safety guarantees and control performance. Key validity conditions that must be satisfied include: Lip-
schitz continuous dynamics (Assumption 2), persistence of excitation (Assumption 3), and bounded neural network
approximation errors (Assumption 4). The framework has inherent limitations: computational complexity exhibits
polynomial growth with system dimension, communication delays may impact the effectiveness of event-triggered
updates, and stability guarantees are only valid when states remain within the neural network approximation region.

6. Numerical Simulations

This section validates the FT-SRL-NZS algorithm through numerical studies on a 3D UAV tracking problem. To
demonstrate the algorithm’s capabilities in handling multi-player nonzero-sum games, we consider a system with two
cooperative agents jointly controlling the UAV trajectory while avoiding obstacles.
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6.1. Simulation setup
Consider a UAV control problem in 3D space. The state vector is xr = [x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇]⊤ containing

positions, velocities, attitudes, and angular rates. The control input is U = [ẋd, ẏd, żd, ψ̇d]⊤. Under small angle
assumption, the UAV dynamics is: 

ẍ = −
kt ẋ
m
− gθ

ÿ = −
ktẏ
m
+ gϕ

z̈ = −
kt ż
m
+ hz1 (żd − ż)

ϕ̈ = −
lhϕ1

Ixx
ϕ̇ −

lhϕ2

Ixx
ϕ +

πlhϕ2 hy1

4gIxx
(ẏ − ẏd)

θ̈ = −
lhθ1

Iyy
θ̇ −

lhθ2

Iyy
θ +

πlhθ2 hx1

4gIyy
(ẋd − ẋ)

ψ̈ =
lhψ1

Izz

(
ψ̇d − ψ̇

)

(55)

where m is mass, g is gravity, kt is drag coefficient, Ixx,yy,zz are inertias, and l is rotor distance. The actor-critic network
parameters and simulation settings are as follows: Basis functions φi for each player i ∈ {1, 2}:

φi =
1

1 + α

[
|xθ̇|1+α, |yϕ̇|1+α, |zψ̇|1+α, |ϕϕ̇|1+α, |θθ̇|1+α, |ψψ̇|1+α

]
The simulation uses MATLAB/Simulink with a step size of 0.001s and a simulation time of 500s. System parameters
are given in Table 1.

Remark 9 (Applicability of FT-SRL-NZS). While the numerical validation focuses on UAV control as a specific
application, the proposed FT-SRL-NZS algorithm is designed for general nonlinear systems satisfying Assumptions
1-4, The algorithm can be applied to various nonlinear processes including robotic manipulation systems with uncer-
tain dynamics, power systems with multiple generators and loads, chemical process control with nonlinear reaction
kinetics, and autonomous ground vehicles with complex dynamics. The UAV example is chosen for its challenging
characteristics, which is high nonlinearity, tight coupling between states, and strict safety requirements - which help
demonstrate the algorithm’s capabilities. The theoretical FT-SRL-NZS framework developed in this paper remains
valid for any nonlinear system satisfying the stated assumptions, with application-specific adaptations primarily in the
selection of basis functions and controller parameters.
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6.2. Simulation results
The simulation results of the UAV control system using the proposed FT-SRL-NZS algorithm are shown in Fig.

3. The critic-NN weights stabilize to steady state with guaranteed time, as demonstrated in Fig. 3(a) and Fig. 3(b).
The UAV achieves obstacle-free trajectory tracking in both 2D plane (Fig. 3(c)) and 3D space (Fig. 3(m)).
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The time evolution of key system states including position, velocity, attitude, and angular velocity are presented
in Fig. 3(d)-3(g). The control inputs from both players are shown in Fig. 3(h)-3(i), with the dynamic event-triggering
threshold illustrated in Fig. 3(j). The Hamiltonian errors indicating learning performance are plotted in Fig. 3(k).

The distance to the obstacle remains above the safety threshold throughout the trajectory as shown in Fig. 3(l),

17



0 50 100 150 200 250 300 350 400 450 500
Time [s]

-2

0

2

4

6

8

(k) Bellman errors

0 50 100 150 200 250 300 350 400 450 500
Time [s]

0

0.5

1

1.5

2

2.5

3

D
is

ta
nc

e(
m

)

(l) Distance to obstacle

(m) 3D trajectory of UAV

Figure 3: Simulation results of the UAV control: (a) Wc1, (b) Wc2, (c) 2D trajectory, (d) position, (e) velocity, (f) attitude, (g) angular velocity, (h)
control input 1, (i) control input 2, (j) triggering rule, (k) Bellman errors, (l) distance to the obstacle, and (m) 3-dimensional trajectory of the UAV.

verifying the effectiveness of the barrier function-based safety constraints. The results demonstrate that the proposed
algorithm achieves: 1) finite-time convergence of neural network weights, 2) obstacle avoidance while maintaining
tracking performance, and 3) efficient event-triggered control implementation without Zeno behavior. The simulation
validates both the theoretical guarantees and practical efficacy of the FT-SRL-NZS approach.

7. Hardware Experiments

To further verify the effectiveness of the proposed FT-SRL-NZS algorithm, hardware experiments are conducted
on an unmanned aerial vehicle (UAV) position tracking control case, which uses an X150 quadcopter equipped with
an RK3566 processor (1.8 GHz, 4GB RAM). An 8-camera OptiTrack system provides real-time position tracking.
The two-player nonzero-sum game controls the UAV to track desired 3D trajectories. The FT-SRL-NZS algorithm
runs on a workstation (Intel i7-12700, 3.6 GHz, 32GB RAM) at a 30 Hz control frequency. Velocity commands are
transmitted to the UAV via 5GHz WiFi. The experimental setup is shown in Fig. 4.

Note that due to the wind, the aerodynamic forces, and the sensor noise, there exist unknown disturbances in
the real-world UAV tracking control. To illustrate the effectiveness of the proposed FT-SRL-NZS algorithm, two
comparison algorithms are considered in the hardware experiments:

1. FT-SRL-NZS algorithm: Proposed FT safe RL control algorithm.
2. StaF-SRL-NZS algorithm from [22]: State-following kernel-based safe RL control algorithm.
3. SRL-NZS algorithm from [31]: Standard safe RL control algorithm.
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Figure 4: Quadcopter and motion capture system for hardware experiment.

where the detailed design of the NN basis functions is given by:

FT-SRL-NZS: φi =
1

1 + α
×
[
|ex|

1+α, |ey|
1+α, |ex|

1+α + |ey|
1+α
]
,∀i ∈ {1, 2}

StaF-SRL-NZS: φi = e⊤(e + 0.7
e⊤e + 0.01

e⊤e + 1
) ×
[
[0, 1]⊤, [0.87,−0.5]⊤, [−0.87,−0.5]⊤

]
,∀i ∈ {1, 2}

SRL-NZS: φi =
1
2
×
[
e2

x, e
2
y , e

2
x + e2

y

]
,∀i ∈ {1, 2}

The initial weights of the critic-NNs are selected as Wc1(0) = Wc2(0) = [10, 10, 10]⊤, and the R11 = R12 = 100,
R22 = R21 = 50, ω1 = 10012, ω2 = 20012, µ1 = µ2 = 0.5, α1 = α2 = 0.01, and the fractional-order for the
FT-SRL-NZS algorithm is α = 0.9.
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(d) FT-SRL-NZS distance
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(e) StaF-SRL-NZS distance
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(f) SRL-NZS distance

7.1. Experiment Results
The experimental results are shown in Fig. 5, where the detailed results of the FT-SRL-NZS algorithm and the

comparison algorithms are presented. The weights of the critic-NNs are shown in Fig. 5(a)-5(c), which demonstrate
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(g) FT-SRL-NZS trajectory
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(h) StaF-SRL-NZS trajectory
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(i) SRL-NZS trajectory

(j) FT-SRL-NZS 3d trajectory (k) StaF-SRL-NZS 3d trajectory (l) SRL-NZS 3d trajectory

Figure 5: Simulation results of comparison experiments: (a)-(c) Ŵc1&Ŵc2, (d)-(f) distance to the obstacle, (g)-(i) 2D trajectory, (j)-(l) 3D trajectory.

that the critic-NNs stabilize within finite time under the control of the FT-SRL-NZS algorithm. The distance to the
obstacle is shown in Fig. 5(d)-5(f), where the UAV maintains a safe distance from the obstacle under the control of
the FT-SRL-NZS algorithm. The 2D trajectory of the UAV is shown in Fig. 5(g)-5(i), where the UAV achieves the FT
optimal control and avoids the collision with the obstacle. The 3D trajectory of the UAV is shown in Fig. 5(j)-5(l),
where the UAV achieves the FT tracking control while avoiding the collision with the obstacle. The experimental
results show that the proposed FT-SRL-NZS algorithm can achieve the FT optimal control of the UAV tracking
control. The critic-NNs can approximate the optimal value function within finite time.

7.2. Further Experiment on UAV Control

7.2.1. Experiment Setup
To further investigate both tracking performance and the safety of the proposed FT-SRL-NZS algorithm in the

UAV control, a more complex UAV control case is considered in this section. The desired trajectory is designed as a
four-leaf clover trajectory, which could be formulated as

xd(t) = 2 cos(2ωt +
π

4
) × cos(ωt +

π

4
)

yd(t) = 2 cos(2ωt +
π

4
) × sin(ωt +

π

4
)

(56)

where ω is set as 0.05, the detailed parameters of the FT-SRL-NZS algorithm are the same as the previous UAV
control case.

7.2.2. Experiment Results
Figure 6 presents the experimental results with the four-leaf clover trajectory. The critic-NN weights (Fig. 6(a))

converge rapidly to steady-state values, demonstrating finite-time stabilization. The UAV successfully tracks the
complex trajectory with satisfactory errors (Fig. 6(d)) while maintaining safe obstacle avoidance (Fig. 6(f)). The
control inputs from both players (Fig. 6(c)) remain bounded and smooth throughout the experiment. The 2D and
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3D trajectory plots (Fig. 6(b), 6(g)) show precise tracking of the four-leaf clover pattern while avoiding collisions.
The barrier function value (Fig. 6(h)) stays within safe bounds, validating the effectiveness of the safety constraints.
These results demonstrate that the proposed FT-SRL-NZS algorithm achieves both tracking performance and safety
objectives in a complex trajectory following a task.
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(e) 2d trajectory
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Figure 6: Experimental results of the UAV tracking four-leaf clover trajectory.

8. Conclusion

This paper develops a novel finite-time safe reinforcement learning framework for multi-player nonzero-sum
games (FT-SRL-NZS). The key contributions include: (1) Formulating a finite-time safe optimal control problem
that achieves Nash equilibrium while satisfying safety constraints, (2) Designing actor-critic neural networks with FT-
CL laws to otain the FT value and its corresponded controller, (3) Implementing dynamic event-triggering mechanism
that reduces computation and communication overhead while preserving stability guarantees. Theoretical analysis es-
tablishes FT convergent NN weights and states through Lyapunov stability theory. Numerical simulations demonstrate
the algorithm’s capability to achieve rapid learning and safe control for nonlinear systems. Hardware experiments on
UAV trajectory tracking validate the practical effectiveness compared to existing methods. Future work will explore
extensions to distributed multi-agent systems and applications with more complex safety-critical constraints. The
proposed framework provides a promising approach for achieving both rapid learning and rigorous safety assurance
in multi-agent optimal control.
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